SOME PROPERTIES OF POLYNOMIAL SETS OF TYPE ZERO
By I. M. SHEFFER

1. Introduction. Pincherle,' in his study of the difference equation

,; cad(@ + h) = f(z),

was led to consider a set of Appell polynomials, in infinite series of which solutions
could be represented. We considered the same equation® by means of a different
Appell set, the change resulting in a significant alteration of the regions of con-
vergence (for the series). This permitted an enlargement of the class of func-
tions f(x) for which a solution could be shown to exist. Recently we treated the
more general equation® (linear differential equation of infinite order)

Lyl =ay + ay’ + --- = f(2),

where, under suitable conditions on L and f, a solution was found. Here, too, it
was possible to relate the equation to a corresponding problem of expanding
functions in series of Appell polynomials. It is this close relation to functional
equations that adds interest to the study of Appell sets.

As is well known, Appell sets {P,(z)} (n = 0, 1, -..) are characterized by
either of the equivalent conditions

(1.1) P.(z) = P,_i(z) (P, apolynomial of degree n);
(1.2) A()e” = 20 Pa(@)t",
0

where A (f) o~ Y, a,t” is a formal power series, and where the product on the left

of (1.2) is formally expanded in a power series in accordance with the Cauchy

rule. We shall say that the series A (f) is the determining series for the set {P.}.
For the particular equation

Yyl + 1) —y(x) = f(x),

Pincherle used the Appell set with A(t) = 1/(e' — 1), getting essentially the
Bernoulli polynomials. We used A(f) = ¢ — 1, so that n!P,(z) = (x + 1)" —

n

z". Now this equation is also associated with the important set of Newton
polynomials
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13) No@ =1, Nl =2E=D n,(x =D gy,
which is not an Appell set. Yet, it has properties analogous to those ((1.1) and
(1.2)) of Appell polynomials. In fact,

(1.4) AN,(&) = Nulx + 1) — N.(&) = N.sa(a),
(1.5) (140 =1 .ol = i::Nn(x)t".

It is thus suggested that we define a class of difference polynomial sets, of which
{N.} is a particular set, by means of the relations

(1.6) AP, (z) = Pna(x) n=012 ...).

And more generally, we can use other operators than d/dx and A, to define
further sets. We thus obtain all polynomial sets of fype zero (as we denote
them). The definition of sets of type zero generalizes readily to give sets of
type one, two, - .-, and of infinite type. (This is done immediately after rela-
tion (1.15).) This hierarchy of types is all-inclusive, in that every set of poly-
nomials is of a definite type.

The main purpose of this paper is to bring to attention these sets of type zero
and to indicate some of their properties. This section considers sets in general.
§2 obtains various characterizations of zero type sets. Then, in §3, a study is
made of the conditions on a set of zero type in order that it satisfy certain
functional equations of finite order. As there are some known Tchebycheff
sets that are of type zero, we next (§4) determine all zero type sets that are
Tchebycheff sets. Lastly, in §5, we examine some extensions of the definition
of type to type of higher order.

By a set of polynomials {P.(x)} (n = 0,1, 2, ... ) we shall mean a sequence
in which each P, is of degree exactly n. We shall denote the set {P,} by I’.

Lemma 1.1. Let J be a linear operator applicable to the functions z" (n =
0,1, ...) (and hence to all polynomials) and such that J[z"] is a polynomial of
degree not exceeding n. Then J has the form

1.7 @) = 3 Ly @,

valid for all polynomials, where L,(x) is a polynomial of degree not exceeding n.

To see this, define the L,(x) recurrently by the relations
(1.8) Jz"l = X Li(@) n(n — 1) «-. (n — Kk + 1)z mn=0,1,...).
k=0

Since the degree of J[z"] does not exceed n, the degree of the L,’s are seen not to
exceed their index. By construction, (1.7) now holds for y(x) = z", and there-
fore for all polynomials.

Of special interest is the case where J[z"] is always of degree n — 1.
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LemMMA 1.2. In order that the operator (1.7) carry every polynomial into one
whose degree is less by precisely® one, it is necessary and sufficient that

(19) Lo(x) = 0, Ln(x) =l + lux + .-+ ln,n-—lxn_l (n = 1: 2) e )
and
(110) Ao = nly + n(n - l)lzl + -+ nlla #0 (n =12... )'

First suppose that J[1] = 0 and J[z"] is a polynomial of degree n — 1
(n =1,2 --.). From (1.8) we find that the coefficients of 2" and 2" in
J[z"] are respectively

loo+nlu+n(n—1)lz2+"'+n!lnn; A (n‘:Oyl)"‘)'

Taking n = 0, 1, ... successively, we see that l;; = 0 (z = 0, 1, ... ), so that
L,(z) is of degree less than n; and in order that L[z"] be of degree exactly n — 1,
it is necessary that A, 5% 0. The conditions are thus necessary, and it is readily
seen that they are also sufficient.

We shall assume without further mention that the operators with which we
deal are of type (1.8) and that they fulfill the conditions of Lemma 1.2, so that
they have the form

(1.11) T = 3 oo o+ g™ @)

With\ £ 0 (= 1,2, - ).

TaeorREM 1.1. Let P: {P,(z)} be a given set. There is a unique operator J
for which

(1.12) J[P.] = Pny (n=01,-..).

If yix) = P, (n = 1,2, ... ) is substituted into (1.11), it is found that the
l:/’s exist to make (1.12) true and are uniquely determined. This is the assertion
of the theorem. If P satisfies (1.12) we shall say that P corresponds to the
operator J. Conversely, we have

TaEOREM 1.2. To each operator J correspond infinitely many sets P for which
(1.12) holds. In particular, one and only one of these sets (which we call the
basic set and denote by {B,}) is such that’

(1.13) By(z) = 1; B,(0) = 0, n > 0.

If @ is any polynomial of degree s, it is found by direct substitution that a
polynomial P exists, unique to within an additive constant, such that J[P] = @Q;

4 It is understood that J[c] = 0 for every constant c.

8 The set {B.} is the ‘‘best approximation’’ set relative to the sequence of operators
Jo, Ji, J2, ... according to the definition in the American Journal of Mathematics, vol.
57(1935), especially p. 593.
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and P is of degree s + 1. Choosing By(z) = 1, we can then successively (and
uniquely) determine By, Bs, .- - to satisfy J[Bn] = Bn-1, B.(0) = 0 (n > 0).
Moreover, B, is of degree exactly n. We thus have the existence of the basic
set. That infinitely many sets exist is a consequence of the additive constant
that is arbitrary. In fact, we have

CoroLLARY 1.1. A mnecessary and sufficient condition that P be a set corre-
sponding to J s that there exist a sequence of numbers {a.} such that

(1.14) P,(x) = apBn(z) + a1Bpa(x) + -+ + anBo(x) (a0 # 0).
Here the B,’s form the basic set for J.
If P satisfies (1.14), then P, is of degree n, so that P is a set. Again,

JIP.) = 25 aiJ[Bail = D @iBui1,

so that J[P,] = P,_;. This proves the sufficiency.
To establish the necessity, we first observe that constants {a.:} exist so that

P.(x) = anBa(x) + - -+ + anBo(z).
From the relation J[P,] = P, it follows that

@By + -+ + GunaBo = @u1,0Bns + - -+ + Ga1naaBo,
8o that
Unj = Qn-1,j G=0,1,...,n— 1)

For a fixed j, this says that for every n = j, all a.;'s with second index j are
equal. It is therefore permissible to drop the first index of each a,.; ; which
means that {a;} exists so that P, is given by (1.14).

It can likewise be shown that

CoroLLARY 1.2. If P is a set corresponding to J, then a necessary and suffi-
cient condition that {Q,} correspond to J is that constants {b,} exist so that

(1.15) Qn = boPy + biPpy+ -+ + 0Py

DeriniTioN. Let J be the (unique) operator corresponding to a given set P.
P is of type k if in (1.11) no coefficient L,(x) is of degree exceeding k, but at
least one is of degree k. If the degrees of the coefficients L,(x) are unbounded,
then P is of infinite type.

From Theorem 1.2 follows

CoRrOLLARY 1.3. There are infinitely many sets for every type ( finite or infinite).

It is of interest to ask under what alterations, either of the set P itself or of
the operator J which defines the type of P, the type is preserved. We consider
two simple cases.

(i) Suppose P, is replaced by ¢.P», where ¢, % 0 (n = 0,1, ... ). Such a
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transformation does not affect convergence properties of series in these poly-
nomials, but it can very well change the type, as is readily established.
(ii) Let the operator

(1.16) Kyl =ky' + by + --- (ky > 0)

be given. The following can be shown (analogously to Theorem 1.1): If P s
any set, there exists a unique operator J g of form

(1.17) Jxlyl = Zl (o + luz + -+ + lunaz” HK"[y]
(where K™ means K[K" '[y]]), such that

(1.18) JK[P,,] = Pn—-l .

Moreover,

(119) A = nlyky + n(n - l)lzlk% + ...+ n!ln,n-lk? # 0 (n = 1; 2; te )

There is also an analogue to Theorem 1.2.

Now suppose that we define the type of a set by the degrees of the polynomials
L,(x) in (1.17). It is seen that no matter what operator K (of form (1.16)) is
used, the type of P is the same.

2. On sets of type zero. Especially simple and important are sets of type
zero. We shall find several characterizations for such sets. It will be con-
venient to restate the condition for a set of type zero as follows: P s of type
zero if

(21) J[Pn]=Pn~l (n=0} 1)2;"' )!
where
(2.2) Jlyl = ey + ey’ + ey’ + --- (cr # 0).

DeriNiTION. The formal series

(2.3) JO) et + et + e’ + -

will be called the generating series (or function) for the operator (2.2).

That Appell sets are of type zero follows from the fact that the generating
series is J(¢) = t. Similarly, for Newton polynomials (and for all the difference
sets—cf. (1.8)), J(t) = ' — 1.

Let P be of type zero, corresponding to the operator J. Let the formal
power series inverse of (2.3) be

(2.4) H{t) o st + o + - (1= ci' #0),
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obtained from®
(2.5) JH®) = HJI®) =t

If ¢ is raised to the power xH(t), the expression will have a formal power
series expansion in ¢, in which the coefficient of ¢" involves only s, --- , 8a.

On multiplying by the formal power series’
(2.6) AW = Y aat" (a0 # 0),
0

a new series (in f) is obtained, in which the coefficient of {* now involves only
G, -+ ,8n;81, -+ ,8.. Infact, this coefficient is a polynomial in = of degree
n, and we have, furthermore,

THEOREM 2.1. A mnecessary and sufficient condition that P be of type zero
corresponding to the operator J of (2.2) is that {a.} exist so that

@7) AW Z”:o P.()1"

From (1.14) of Corollary 1.1 it is seen that both the necessary and sufficient
parts will follow if we can show that for the basic set {B,} (corresponding to J)
we have

(2.8) Y~ > Bt

Let exp {xH ()} have the expansion Y C.(x)t". Then C,(x) is a polynomial
of degree exactly n. On setting 2 = 0, we obtain 1 ~ »_ C.(0)t", so that
Co(0) = Co(x) = 1, C,(0) = 0 (n > 0). By Theorem 1.2, {C,} will therefore
be the basic set if we establish the relation J[C,] = Cuy (n = 0, 1, ... ).
Operate on the C,(x)-series with J. This gives

}:: JICJt" =~ Jlexp {zH(t)}] o~ {:H + ¢.H® + ... }.exp {zH}

s J(H©)-exp (H) 2 exp (o) 2 3 Coa

6 If the series for J(¢) is formally substituted for ¢ in (2.4), and coefficients combined
(in the usual way) to form a single power series in ¢, the coefficient of ¢» is for each n a
polynomial in ¢1, ¢z, *++,€Cn, 81, -+, Sn. It is possible to choose s, recurrently and
uniquely as a simple functionof¢1, -+, ¢n, 81, **+, Sn—1, S0 that the power series reduces
to the single term ¢. This sequence of s;’s is the one to be used in (2.4).

7 The condition ao # 0 is to insure that P,(zx) in (2.7) is of degree n and not less. But
ao # 0 is no essential restriction. See, for example, the footnote on page 916 of Bull.
Amer. Math. Soc., vol. 41(1935).
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and on comparing like powers of ¢, we obtain J[C,] = C.—i. Thus, (2.8),
holds.?

CorOLLARY 2.1. In (2.7) the numbers {a.} are the same as in (1.14).

Thus, for Appell sets, (2.7) holds with H(t) = ¢ (cf. (1.2)), and for difference
sets (including the Newton polynomials), H(t) = log (1 + t), so that a necessary
and suflicient condition for a difference set P is that

(2.9) ABQA + ) = 22 Pa(@)t"

Another familiar set of polynomials of type zero is given by the Laguerre
polynomials which satisfy the relation

(2.10) e {1 & } > L

For this set,

A = 1, HO=JO = -3,
so that

Loa(x) = —(Ln + L + Ly + ...).

8 Some words are in order regarding the validity of the above proof, which uses formal
series; particularly, since like arguments (as well as obvious modifications) will be used
again, Let k be any positive integer. Consider the operator

Jilyl = ey’ + -+ + cy®
and the generating series

Jie(t) = et + +++ + cath.
Let Hi(t) be the inverse of J(t):

Je(Hi(t)) = He(Tx(t)) = ¢,

and define Cn(x) by the convergent expansion

exp (D)} = 3 Cn(a)tn

n=0
The argument advanced above is now completely legitimate, giving the relations
Jk[Clm(x)] = Ck,n—l(x).

Now it is readily seen that the series for H(t) and for H,(t) agree through the term in
tk, whence the same is true for the two series for exp {xH(t)} and exp {xH:(t)}. This means
that Cin(z) = Cu(x) (n =0, 1, --- , k). As kis arbitrary, it follows that J[C.] = Cn_1 for
all n. This establishes (2.8) and, therefore, (2.7).

Having thus shown that the use of formal power series yields the correct result (in the
above case), we shall not hesitate to use such power series in what follows, leaving the
argument in the present footnote as a guide to further ‘“validity proofs’’.
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Every set satisfies infinitely many linear functional equations. One of the
simplest for sets of zero type is given by

THEOREM 2.2. Let P be of type zero corresponding to operator J, and let A(2)
be its determining series. Then P satisfies the equation

(2.11) Liy(x)] = 2 (g + 2q:)J [yl = Ny,

where X = n for y = P,(x). The ¢’s are defined by

AW R .
(2.12) a0 = 203 Intr0t",
2.13) H'() o g; s

Suppose each side of (2.11) (with y = P,, A = n) is multiplied by ¢" and a
summation made from n = 0 to n = «. There result two power series in ¢.
(2.11) will be established if we show that these series are formally equal. Now
the right-hand series is

t > nP.t" "t {Ae’”} ~ t"" (A’ + xH'A}.

&]Q_,

Also,
SOTHP e 8 D Pt o A",

so that the left-hand series is

Z Z (g0 + Q) J[PaJt" = Z (gr0 + 2qu)t* Ae™,

n=0 k=1

and if we use (2.12) and (2.13), this becomes
’
Ae™ {t% + xtH'}.

Hence, the two series are equal, and (2.11) holds.

Since (2.11) is linear and homogeneous, multiplication of a solution by a
constant again yields a solution. But such multiplication may destroy the
property of being a zero type set. We cannot therefore obtain a complete
converse to Theorem 2.2. But we do have

CoRoOLLARY 2.2. Given an operator J. If a set P satisfies an equation of form
(2.11), where X = n for y = P.(x), and if {gu} is related to J by (2.13), then
non-zero constants {h,} exist so that {h.P.} ©s a set of type zero corresponding to J.
Its determining series A(t) is then given by (2.12).

For, define A (f) by (2.12), the arbitrary multiplicative constant which enters
being given any non-zero value. By Theorem 2.2, the set {R,}, of type zero,
corresponding to J and with determining series A4 (¢), satisfies (2.11). Now, it is
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readily found that for A = 7 equation (2.11) has a polynomial solution, and
that this polynomial is unique to within an arbitrary multiplicative constant.
Hence, {h.} exists so that R, = h,P,.

As a characterization of sets of type zero, Theorem 2.2 is not wholly satis-
factory, since it involves the operator J of the set. This objection is removed in

Tarorem 2.3. If P is of type zero, it satisfies an equation of the form
(2.14) Mly(2)] = k):_l (oo + 2r)y® @) = My(@),

where N = n fory = P,. Moreover, the operator J and determining function A
corresponding to P are related to the r's as follows:

o, wA' (W)
(215) I; Trol = A(u) ;
(2.16) 2ttt & uH'(u),
k=1

where w = J(). Conversely, if a set P satisfies equation (2.14), then non-zero
constants {h.} exist such that {h,P,} s of type zero.

To see this we observe that if in (2.11) we write out each J*[y] as a series of
derivatives of y and collect all terms with the same order of derivative, then to
each k there are only a finite number of terms in y® (z). The result of this
collecting of terms is to give us the equivalent equation (2.14).

If in (2.11) and (2.14) we replace each derivative y® (z) by t*, we obtain of
course the same formal series (since (2.14) is merely a regrouping of terms in
(2.11)). That is,

’; (reo + i)t = ’; (qro + zq) J*(t).

On using (2.12) and (2.13), we obtain (2.15) and (2.16). The converse follows
as in Corollary 2.2.

One obtains a generalization by replacing ¥ (z) in M[y] by K*[y], where K
is an operator of form (1.16). This yields the following theorem (proved as
was Theorem 2.3):

THEOREM 2.4. Let operator K be given. If P s a sel of type zero, it satisfies
an equation of form’

@.17) Tly(@)] = kg (o + ) K*Ty] = My(a),

where N = n for y = P,. The operator J and determining function A corre-
sponding to P are related to the v's as follows:

® We observe, on comparing the coefficient of z» on both sides of (2.17), that ri1 = k.
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< . uA’(u)
(2.18) ; ol K(H)]* = A’

. u = J().
(2.19) ;f: ral KO))* = uH'(u),

Conversely, if a set P satisfies equation (2.17), then non-zero constants {h,} exist
so0 that {h.P,} is of type zero.

From (2.11) of Theorem 2.2 there follows a further characterization of sets
of type zero, expressed solely in terms of the members of the set itself. It is

THEOREM 2.5. A necessary and sufficient condition that a set P be of type zero
18 that constants qxo , qx1 exzst so that

(2.20) gl (gro + 2qu1) Poi(x) = nP,(z) n=12 -...).

The operator J and the determining series A for P are related to the ¢’s by (2.12)
and (2.13).

Let (2.7) be differentiated with respect to . On equating coefficients of like
powers of ¢, we obtain

(221)  Ph(z) = 8:Puui(@) + 8Pus(®) + -+ + 8:Po@) (m=1,2, -..),
whence we have

TaEOREM 2.6. A mecessary and sufficient condition that a set P be of type zero
s that constants {s.} exist for which (2.21) holds; in this case the operator J
corresponding to P is determined through {s,} by means of (2.4) and (2.5)."°

Theorem 2.6 will later be seen to generalize to sets of all types. (Cf. Lemma
5.1.) TItis of interest to compare (2.20) and (2.21). The latter involves only J
(through H), so that all zero type sets for one and the same operator satisfy the
same equation of form (2.21). On the other hand, both J and 4 are involved
by the constants present in (2.20), so that if sets {P,} and {Q.} both satisfy
(2.20), then there is a ¢ # 0 such that @, = c¢P,, n > 1;i.e., there is an essen-
tially unique set satisfying (2.20) for given g0, ¢s1 -

If (2.7) is differentiated with respect to z, the left side is multiplied by H (2),
and P, replaces P, on the right. Recalling that H begins with a term in ¢,
we see that Q, = P, is a set of zero type, corresponding to the same operator
J as does P. In other words, we have

TueorEM 2.7. If P is of type zero, then so are the sets {Pnii}, {Pnis},
{P',,'ﬁrs}, ... ; and they all correspond to the same operator as does P. More

10 A simple extension of Theorem 2.6 is the following: Let P be a set with operator J whose
inverse 1s H, and let K be an operator of form (1.16). Set

K(H®t)) o ait + ast? + --- .
Then
K[P.(2)] = a1rPu_1(x) + aPros(x) + -+ + anPolz) (®m=1,2, ---)
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generally, let K be of form (1.16). Then, of P is of type zero, so are {K[P.pi]},
{K*[Poayal}, -+, and they correspond to the same operator as does P.

Let us apply the preceding characterizations to some well-known zero-
type sets.
Example 1. P,(z) = z"/n!. Then

iPn(x)t" =e% AWM =1, H@E) =J@ =t

It is readily determined that (2.11) and (2.14) become
zP, = nP, s
and (2.20), (2.21) become, respectively,
2P,y = nP,, P, =P.,.
Also, (2.17) holds with 74 = 0 and r; determined from

> ralKQF =t
k=1
Example 2. Laguerre polynomials {L.(x)}. Here

Suer = (L) ew T a0 =1y, g0 - H0 -

1—-¢ t
It is found that (2.11) and (2.14) become
:; (1 = kz)J"[Ln(x)] = nLa(2) Uyl =~y —y" —y"" — -+,
(x — 1)L, — zL = nL,,
while (2.20), (2.21) reduce to

i (1 = k&) Loi(@) = nLa(@), Ln@) = —[Laa@) + Laoa(@) + ---].

k=1

Most of these relations are known. In (2.17), ri , 7 are determined by the
series

S rlKOF = —t, 2 rulKOF =t — £
k=1 k=1
Ezample 3. Hermite polynomials {H.(x)}. Here"
> H @)t =exp {—8 + 2z}, A@) =¢ ", H@) =2, JE) = 3.
n=0

11 It is more common to define H,(z) so that H,/n! is the coefficient of t». We find it
simpler to adopt the present definition.
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Relations (2.11) and (2.14) become
2cHn — Hy = 2nH,,
and (2.20), (2.21) become
22H, , — 2H, s = nH,, H, =2H,,.

These are also well known. The defining relations for 74, 7% in (2.17) are
> rlKOF = —3, 3 ndKQOF =1
Ezample 4. Newton Polynomials. Here
EN@E= 00, A0 =1, HO=lg@+1, JO = -1

It is seen that (2.11), (2.14), (2.20), (2.21) become, respectively,

z Z»: (=1)*A*N.(2) = nN.(z), z i ("l)k_le.k)(x) = nN.(z),
=1 =1 k!

2 3 (=) Nasa) = nNa(@),
k=1

Ni@) = Nos®@ = 2Nua@ 4 - + T .

In (2.17), 7w = 0 and ry is determined by

i ralK@OF =1 — ¢
k=1

3. On sets of zero type satisfying finite order equations. In the Bulletin
paper (cited in footnote 7) those Appell sets were determined that satisfy a
finite order linear differential equation with polynomial coefficients. Here we
extend the problem to the case of a finite order equation in an operator K of
form (1.16), satisfied by a zero type set P corresponding to the operator J and
determining function A. We first restrict our attention to equations of
form (2.17).

In order that a set P, corresponding to a given J and A, satisfy a finite order
equation of form (2.17):

@3.1) Tly()] = ‘_; (rio + 2r) K'ly] = (@),

with N = n for y = P,(z), it is necessary and sufficient that the following rela-
tions hold:"

12 Tt was shown in a footnote to Theorem 2.4 that r1; = k7' .
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(3.2) 2 rol KQF = Folt),
3.3) > rlKQF = Fa),
k=1

where s = max (m, ¢) and Fy, F; are defined by
3.4) Fot) = {ud'(w)/A(w)},  Fi(t) = {uH'(u)} (w = J@).

Suppose P satisfies (3.1). Since ry = 1/k; 5 0, at least one 7 is not zero,
and we let ry be the last non-zero one. On the other hand, all the r’s may be
zero. 'This is true, as we see from (3.2), if and only if 4(¢) is a constant. (3.3)
then gives us

TaEOREM 3.1. If P corresponds to a given J and A, with A(t) = ¢ # 0, then
a necessary and sufficient condition that P salisfy a finite order equation of form
(3.1) is that Fi(t) be a polynomial in K(t).

Now suppose that A % ¢. Then the ri’s are not all zero, and we let 7,0
be the last non-zero one. Since (3.2) and (3.3) are polynomials having a
common root K(t), their Sylvester determinant vanishes:

7m0 Tm—t,0 +++ T — Fo(t)

v Tmo Tm—1,0 s o0 — Fo(t) _
(3'5) Tql Tq—1,1 s i — Fl(t) =0

Tq1 Tg—-1,1 e ru — Fi(f)

(In (3.5), elements that are zero are not indicated.)

Conversely, suppose (3.5) holds for a choice of the 7’s, with rme ¥ 0, ra = 0,
and let s = max (m, ¢). Then there is a common solution K(t) of (3.2) and
(8.3), which solution can be expressed as a formal power series in {. Now
from (1.16), K must begin with a term in ¢. Suppose the common solution K (£)
does not have this property. Then let us set K(f) = ¢ + K;(t), where K;(0) = 0.
On substituting into (3.2) and (3.3), we obtain two polynomials (on the left)
with constant terms ¢y, ¢, say. Now for ¢ = 0, since Fo(0) = F1(0) = 0,
we get ¢¢ = ¢ = 0. Hence, K;(f) is also a common solution, and it is zero
att = 0. We shall then use K;, or, what amounts to the same thing, we may
suppose that K(0) = 0 to begin with. If K begins with a term of higher
degree than one in ¢, then so does the left side of (3.3), and therefore the right
side. But tH’(¢) begins with a term in ¢, as does J; hence, so does Fi(f). As
this is a contradiction, it follows that K(f) begins with a term in ¢, and thus
the common solution K has the properties of (1.16). Therefore P satisfies
(3.1). This establishes

TaeOREM 3.2. Let P correspond to J and A, where A # c¢. A necessary and
sufficient condition that P satisfy a finite order equation of form (3.1) is that Fo(t)
and Fy(t) satisfy (3.5) for some choice of Tho , Tir (With Tmo 7 0, Ty # 0).
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As (3.5) is to be an identity in ¢, it will likewise be an identity in u where
u = J(t) (so that ¢ = H(u)). Accordingly we have

COROLLARY 3.1. In Theorem 3.2 the functions Fo(t), Fi(t) may be replaced
by ud’(u)/A(w), uH'(u).

Theorem 3.1 can be generalized to

TarorEM 3.3. If in Theorem 3.1 the condition “A(t) = ¢ % 0” is replaced by
the condition

(3.6) i) = 3 o lFOF (0  0),

then the same conclusion holds.

For, K(t) can be defined by (3.3), whereupon Fo(t) is expressible as a poly-
nomial in K(f). That is, an equation of form (3.2) holds. Hence, P satis-
fies (3.1).

There are infinitely many pairs of functions F, , F; satisfying a given relation
(3.5). One can, for example, give one of Fy, F; arbitrarily. This suggests
examination of the following question: Given one of the three elements J, 4, K,
to what extent are the others determined so that (3.1) holds?

Case I. Given J(t). This determines H(f) and therefore Fi(f). In fact, one
easily finds from (2.5) that

3.7 i) = J@t) = J'@).

DeriNiTION. Given a function (or formal series) f(¢), beginning with a term
int. We denote by F{f(¢)} the class of all (formal) series z(t), beginning with
a term in ¢, satisfying a relation of the form

(3.8) Pz + pt + - + pa” = f(t),

the p’s being constants, with py # 0. F{f(¢)} thus represents a special class of
algebraic functions of f(¢).

In terms of this definition, we see that K is determined from (3.3) as a member
of the class F{Fi(t)}. That is, J being given, K must be in F{F1(t)}, but can
be an arbitrary member of this class. Consider any such K(t). From u = J(f)
follows t = H(u), so that K(f) = K(H(u)) = K*(u). A(u)is then determined
by the (necessary and sufficient) condition that wAd’(u)/A4 (u) be a polynomial in
K*(u). Observing the wide choice possible for K, after which a further wide
choice for A exists, we see that to each operator J correspond a large variety of
polynomial sets P satisfying an equation of form (3.1).

Case II. Given K(t). Then F,(t) is to be a polynomial in K(t), lacking a
constant term and with coefficient of the linear term equal to ki’. For all
such F;, we determine J(f) from (3.7). Having now K and J, we obtain A
as in Case I.

Case III. Giwen A(f). Let K*(u) be any member of the class F{ud’'(w)/
A(u)}. Determine wH'(u) as any polynomial in K*(u) beginning with a linear
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term, and solve for H(u). Relation (2.5) gives us J(u), and with this J we
determine K (f) from the identity K(f) = K*(J(¢)).

As illustration, choose K (t) = ¢, so that (3.1) is a differential equation. From
Case II we see that

S 1
J e’
where Q(£) is any polynomial of form
3.9) QW) =1+ Ut + .- + Lt
and that therefore
1 Q@)
3.10) J() = ctexp { f Ll dt}

The inverse function H can be found from the power series for (3.10) or from
the differential equation™

(3.11) uH'(w) = Hw){l + LH®@) + --- + L,H'(w)},

with the condition that H(u) begins with the term ¢/c. And finally, 4 is ob-
tained as the solution of the differential equation

ud’(uw)
A(u)

where the b’s are arbitrary, but b, # 0;i.e.,

=bH@ + -+ + bunH" (),

3.12)  A() = y-exp { fo 5 biHw) + - - + bnH"W)] du},

v = arbitrary constant.

Relations (3.10), (3.11) and (3.12) are thus necessary and sufficient conditions
that equation (3.1) be satisfied for K(t) =

It has already been remarked that (2.17) is not the only linear functional
equation satisfied by a set P. In fact, extending a result in the Bulletin paper
(loc. cit., p. 914), it is easy to show that given an operator K of form (1.16),
and given any set P (which need not be of type zero), polynomials {La.(z)}
with L, of degree < n, and characteristic numbers {\.}, can be chosen, and
indeed in infinitely many ways, so that the set P is a solution of the equation™

(3.13) Lly@)] = ”Z_ﬂ L.@K" "yl =Ny

(with X = A, for y = P,).

1BK() =t=K*(u) = K(H(u)). Therefore, H(u) = t, and K*(u) = H(u). (3.11) then
follows from tQ(t) = uH'(u) (u = J(t)) if we write t = H(u).

14 It is no restriction to have the summation begin with n = 1, for if a term n = 0 is
present, it is of the form Loy = cy, and this can be absorbed into the right side. The only
effect is to alter all the A\.’s by the amount —c.
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An equation (3.13) is said to be of finite order r if L.(x) = 0 for n > r, but
L, # 0. We now investigate conditions under which a set P of type zero
satisfies a finite order equation of form (3.13).

Lemma 3.1. A set P (not necessarily of type zero) cannot satisfy two different
equations of form (3.13) if the characteristic numbers are respectively the same.

For, suppose P satisfies (3.13) and also L*[y] = Ay (whose coefficients and
characteristic numbers are Ly(z) and Ay = \,). By subtraction,

i: (L. — LYK[P.] = 0 =12 ...

Now, K"[P)] = 0, n > s, and K"[P,] = constant > 0. Hence, on setting
s=1,2, ... successively, we find that L, — LY = 0, s = 1. The two equa-
tions, supposedly different, are thus identical.

If we set

(3.14) L) = b+ -+ + Laz",
the characteristic numbers A, of (3.13) are given by
(3.15) A = nkidy + nn — Dkl + -+ + 0lkil (0 = 0,1, ... ).

This is seen on equating the coefficient of " on both sides of L[P,] = \,P, .
Suppose P is a set of zero type. We know that it satisfies (2.17), which is a
particular case of (3.13):

(3.16) T[P,] = ; Su(x)K*[Pa] = nPu,
1
where
(317) Slk(x) =T + LTkt m = 1/’61 # 0.

Now define operators T, by
(3.18) Tilyl =TT = I(T — 2) --- (T — k + D[yl.

THEOREM 3.4. If the zero type set P satisfies (3.13), then (3.13) can be ex-
pressed in the canonical form

(3.19) Lly]l = ; anTalyl = My,

where T, 1s given by (3.18) and a, by
(3.20) an = lun-br .



606 I. M. SHEFFER

To see this, denote the operator of (3.19) by L*[y]. If in (2.17) K[y] and
its iterates are replaced by series in derivatives of y, using (1.16), we can write
Tly] as®

(a) Tlyl = 2 Qu@)y® @),

k=1
where Qy is a polynomial of degree = 1. Iteration gives
(b) Tyl = ;; Qu@)y™ (),

where Q. is of degree < max (n, k). From this it follows that

(c) Talyl = ,; Ru(2)y® (2),
R being of degree < max (n, k).

On replacing each y* () by its equivalent as a series of iterates of Ky,
(c) becomes'®

(d) Talyl = ; Su(z) K* [y],

where S, is a polynomial of degree < max (n, k). Since from (3.16) T|P,] =
nP, , therefore

(3.21) TAPi) = k(k — 1) --- (k — n+ 1)Py,
and in particular,
(3.22) T,[Px] = 0, n > k.

Using (3.22) in (d) for k = 1,2, ... ,n — 1, we find that S,z = 0, k¥ < n, so
that (d) can be written

(3.23) Tolyl = :Z S @) K* [y

If we substitute this expression into L*[y] (given by (3.19)) and collect like
iterates of K, we obtain for L* the form

00

L*lyl = 2 {aaSu + -+ + axSu} K* [yl

That is, L* can be written in the form of (3.13). By Lemma 3.1 it will follow
that L* and L are identical if we show that the respective characteristic numbers
are the same. For L the numbers are X\, , given by (3.15). From (3.21) we

15 Since K (t) begins with a term in ¢, and therefore K*(¢) with a term in t¢, the coefficient
of any y® (z) in (a) is obtained from only a finite number of coefficients of (2.17). Hence,
the coefficients in (a) are well-determined.

16 The point of the preceding footnote applies here also.
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see that N3 (for L*) is given by
A= ’gak-n(n-— 1) .- (n—k+1),
and this is precisely A\,. The theorem is thus established.

CoROLLARY 3.2. Under the conditions of Theorem 3.4, the coefficients L,(x) of
(38.13) are given by

(3.24) L,(z) = a1S1(x) + - -+ + anSun(®) n=1,2 ...).

To justify the phrase “‘canonical form”, it should be shown that every equa-
tion of form (3.19) has a solution of zero type. That is,

TuroreM 3.5. Let K be an operator of form (1.16), and let T[y] be of form

00

Tlyl = 2 (rio + 2r) K*[y]

k=1

with ry = 1/ky # 0. Then for every choice of o’s (not all zero), the equation

8 satisfied by a zero type set.

In fact, T[y] serves to define a zero type set P by virtue of Theorem 2.4 and
the relation (2.17). This same set P will clearly satisfy the above equation
Lly] = Ay, and this is what was to be shown."”

Lemma 3.2. In order that a zero type set P salisfy a finite order equation of
Sform (3.13) it is necessary and sufficient that in the canonical form (3.19) (into
which (3.13) can be cast) the following two conditions hold:

Op = 0, n>r,
allSln(x) + e + arsrn(w) = 0, n>r.

If r is the smallest positive integer for which this is true, the equation is of order r.

For, if (3.13) is of order r, then from (3.20), a, = 0, n > r; and from (3.24)
the other relation of (3.25) follows. Conversely, suppose (3.25) holds. Then
(3.24) yields the relations L.(z) = 0, n > r. The assertion as to the order is
obvious.

The function K(¢) can be expanded in a power series in J (t), where J is the
operator for set P:

(3.25)

17 However, it cannot be asserted here (as was the case in Theorem 2.4) that if Q is any
set satisfying L[Q,] = M\.Q. , then there exist non-zero constants c, such that P, = ¢,Q,
is of type zero. For, it may now happen that two or more N’s are equal. Suppose A\ = \,,
which value we call .  Qn and @, are solutions of L[y] = Ny, and therefore so is aQ., + bQ,
for all constants a and b. The argument used in Theorem 2.4 (or rather first used in Corol-
lary 2.2) is thus no longer valid. And it cannot be successfully amended.
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(3.26) K(t) s mJ () + () + - - .
Similarly,
K'(t) = rad*(t) + rion Q) + - - G=12 ...),

D ril® o (E r,,t"> .

n=q n=1

Recalling that J[P,] = P,.;, we find that

K[Pn] =1Ppa+ r9Prso+ .- ,
K2[Pn] = TooPrno + 193 Pn_3 + - ,

....................................................

Ki[P,] = T Pni 4+ riip1iPaia + -+ .

And on using these relations and also (3.21) in (3.23), we obtain the further
relations

(3.27)

(3.28)

nP, = }:{ Sii{riiPai + tijpa Pojor + -+ + 1P} (n=1,2,...);
=

n(n — 1)P, = ZSzj{Tijn_j + oo+ i Po} (n=2,3,-..);
(3.29) ﬁ —

............................................................

= jz:;cski{rﬁpn-f-i- vt Pl (e=kk+1,..0).

Equations (3.29) enable us to determine the S;;(x)’s in terms of the set P.
Let us define 6(t) by

(3.30) Ot) ox rit + rof* + -+ - .

Comparison with (3.26) shows that

(3.31) o0(J (1)) >~ K(1).

Suppose the first relation of (3.29) is multiplied by ¢" and the result summed
fromn = 1ton = «. The left side becomes Y nP,t", while the right side
is seen to reduce to

(20: Pnt"){Su ; rint” + S ; ron " <+ .. }

From the definition of r;;, the series in the braces represent 6(t), 6°(t), - - - .
That is,

Z nP,.t"g ( . Pnt"> {Sue +Suez+ “'}.

n=1

Now »_ P,t" is given by (2.7). We thus have
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(332) 2 (A"} = 4O Su@OW) + Su@O'W) + -},
In similar manner we obtain from the second relation of (3.29),

(3.33) {Aew} >~ Ae™ (86" + Su0’ + ... };

6t2

and from the general relation of (3.29),

(3.34) {Aew} ~ Ae™ (86" + S, RY S LALIE SE

atk
These relations permit us to establish

TuEOREM 3.6. Let P be of type zero, with operator J and determining func-
tion A. In order that P satisfy a finite order equation of form (3.13) it ¢s necessary
and sufficient that constants oy ; - - - , o, exist, not all zero, such that the function

--a:H(t)
A

when expressed as a power series in O(t), reduces to a polynomial in O(f).

(3.35) Qi z) =

[alt— (A} + .- + arté—t,{Ae’”}]

Q can be written as a power series in ¢, and can therefore (formally) be ex-
pressed as a series of powers of ©(t). More precisely, from (3.32) to (3.34)
we have

Qt, 2) =~ {auSul0®) + -+ + {81 + -+ + @ 8,}07()

3.36
39 + Zﬂ {8 + -+ + 810" ().
Suppose P satisfies a finite order equation, so that conditions (3.25) hold for
some 7. Then Q(¢, ), as seen by (3.36), reduces to a polynomial in ©(¢). The
necessity of Theorem 3.6 is thus proved. Conversely, suppose that for some r
Q(t, z) is a polynomial in ©(¢). We wish to show that set P, corresponding to
the A and J in terms of which @ is defined, satisfies a finite order equation.
We know that P satisfies (2.17). Using operator 7' of (2.17), we form the
equation

(3.37) LMzgmnm=m

which is also satisfied by P. It is this equation that we shall prove is of finite
order.

If L[y] is recast in terms of K[y], so that it is of form (3.13), the coefficients
L,(x) are given by (3.24), with a, = 0 for n > r. Now from (3.36), since @
is a polynomial in ©(t), there is an integer s such that

alSln+ +arSrn= 0, n > s.
Hence L,(z) = 0 for n > s. This establishes the sufficiency.
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The condition of Theorem 3.6 is more serviceable than is that of Lemma, 3.2,
since the function @ is determined directly from 4 and H. We can rid our-
selves of the function 6(f) on making use of (3.31). It gives us

CoroLLARY 3.3. The zero type set P satisfies a finite order equation if and
only of constants oy, - - - , o, (not all zero) exist so that Q(J (t), x) is a polynomial
in the function K(t).

Whenever the choice r = 1 is permissible, the condition of Theorem 3.6 (or
of Corollary 3.3) is seen to reduce to the conditions (3.2), (3.3) already met.

CoroLLARY 3.4. If P satisfies an r-th order equation (3.13), then for this
equation Q is gien by

(3.38) Qi z) = Z:l Li(z)6’(2).

This follows from (3.36).

Corollary 3.4 enables us to show that neither the Legendre set {X,(x)} nor
any set {c,X.} is of type zero. The Legendre polynomials are given by

(1 -2 + &) = 2:) X. (@)t

If {X.} is of type zero, then the left member is of the form exp {xH(t)}. This
is readily seen to be impossible.

Now suppose {P, = ¢,X,} (¢, 5% 0) is of type zero. X,, and therefore P, ,
satisfies the finite order equation

(1 -2 — 2y =N

with A = —n(n + 1) for y = P,. Here the operator K[y] is merely y'(z),
so thatO(t) = H(t). Also, Ly = —2x, Ly = 1 — z*. Hence, from the corollary,

Qt, z) = LH + LH® = —2zH + (1 — 2")H".

If we equate coefficients of like powers of  on both sides, we get from the z*
terms: #*H” = H?, so that H = ct; and on using this result in the equation
obtained from the x terms, we find that A (f) = constant. Finally, the constant
terms tell us that = 0 so that ¢ = 0. Hence, ), P.t" has for sum a constant.
This contradiction shows that {P, = ¢,X,} is not of type zero.

4. Zero type sets that are Tchebycheff sets. The Hermite polynomials are
Appell polynomials, and are thus of zero type. They are also Tchebycheff
orthogonal polynomials.”® Another orthogonal set of zero type is the Laguerre

18 The definition of H,(z) in Example 3 of §2 requires modification in order to satisfy the
condition H!(x) = H,.,(z) for an Appell set. But such alteration consists only in mul-
tiplying each H, by a suitable non-zero constant ¢, . This being done, it is known that the
Hermite set is essentially the only Tchebycheff set that is also an Appell set.
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set (cf. (2.10)). This suggests the problem of determining all zero type sets
that are orthogonal.

J. Meixner” has treated this problem by the use of the Laplace transforma-
tion, taking (essentially) the relation (2.7) as the definition of the polynomials
under consideration. It is possible to give a quite different treatment by means
of the known properties of zero type sets, and this we do here.

As a characterization of an orthogonal set {Q,} we take the relation®

(4-1) Qn(x) = (3; + An)Qn—l(x) + I-ann—2(x) (n = 1) 2) te )’

Nn, mn being real constants with u, # 0, n > 1. If {Q.} is an orthogonal set,
50 is {c.@.}, ¢» # 0 (although the multipliers ¢, can spoil normality if Q. has
this latter property). We shall therefore set the problem as follows: For what
sets {Q.} satisfying (4.1) do there exist non-zero constants c, such that

4.2) P.(x) = c.Q.(x) m=0,1,--.)
is a set of type™ zero?

Suppose that {P,} of (4.2) is of type zero. From (4.1) we obtain an expression
for nP,(x). Comparing this with the value of nP,(x) as given by (2.20), we
obtain (on equating coefficients of like powers of x):

(4.3) nle. = egli,  qihn = Qugn + (0 — 1ga,
(4.4) Qg = n{gugh — qQuqugn — (g8 — qugs)(n — 1)}.

That is, A, is at most linear and u, at most quadratic, in n, and u, has a factor
(n — 1).

19 Orthogonale Polynomsysteme mit einer besonderern Gestalt der erzeugenden Funktion,
Journal of London Math. Soc., vol. 9 (1934), pp. 6-13.

20 As justification we observe first that every set orthogonal according to the classical
definition satisfies a relation of form (4.1); and secondly, that Shohat has shown that a
necessary and sufficient condition that a set {Q.} (normalized so that the z term has a
coefficient unity) be orthogonal with respect to a weight function ¥ (z) of bounded variation
in (—o, + «) is that {Q.} satisfy (4.1) with u, > 0 for all » > 1. (J. Shohat, Comptes
Rendus, vol. 207(1938), pp. 556-558.)

We note that in the Shohat definition of orthogonality it is tacitly assumed that no
member of an orthogonal set is orthogonal to itself (relative to the given weight function ).
It is easy to show that if an ‘‘orthogonal’”’ set satisfies (4.1) with p, = 0 for some n > 1,
then at least one polynomial of the set is self-orthogonal. Thus, for example, the set
{z"} is “orthogonal’’ for the following choice of y:

1, z = 0;
V@) = {0, 20

This set also satisfies (4.1) with \, = u, = 0 for all n. This apparent contradiction to the
theorem of Shohat is resolved when we note that z» is orthogonal to itself for every n > 0.
A colleague, H. L. Krall, has made the further observation that every set P for which
P,(0) = 0 (n > 0) is ““orthogonal” relative to the same function y above.
21 We shall also assume for convenience that Po(z) = 1. This is no essential restriction
since it means only that all the polynomials P,.(z) are multiplied by one and the same non-
zero constant. The property of being of zero type is thus unaltered.
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This condition is also sufficient. For suppose A,., u. have this form, and
let {Q.} be defined by (4.1). Let a # 0 be any number and set

(4.5) ¢ = a”/n! m=0,1,...).

Now define {P,} by (4.2). We are to show that P is of type zero. From (4.1)
and (4.2) follows a relation of form

(4.6) nP, = (ax + B + ny)Puua + (6 + ne)Prs,

a# 0,0+ ne><0(n>1). From this we obtain P, as a linear combination
of P,, P,y, P,». It is now a straightforward matter to show that con-
stants g , qu1 exist so that

To = (g0 + 2¢1)Pn1 + (g0 + 2921) Pz + - --

is identically equal to nP,. They are, in fact, determined by the relations

4.7 Qrr2l = Yqri1,1 + €Qu1,
(4.8) Q1,0 = i{qkl(a - (IC - 1)5) + Qk-'»l,l(ﬂ - 'Yk) + (k + l)qk+2:1}‘

Thus (2.20) holds, and P is of type zero. That is, we can state

TuEOREM 4.1. A necessary and sufficient condition that an orthogonal set {Q,}’
given by (4.1), be such that P, = c.Q. s of type zero for some choice of ¢, # 0
18 that N\, , u. have the form

(4.9) A = a + bn, wn = (m — 1)(c + dn),
with ¢ + dn £ 0 for n > 1.

As it stands this criterion does not reveal the sets P that are both orthogonal
and of type zero. We therefore examine the problem more closely. Relation
(4.8) shows that {q} is determined when {qi:} is known. Let us then turn to
the recurrence relation (4.7). The characteristic equation is

(4.10) wW—yu —e=0.

Case I. v* + 4e = 0. Using the initial conditions ¢u = @, @u = ay, we
obtain
@11)  gu = akG0, g = G036y + 20k + 26 + M)}
Then from (2.12) and (2.13), we get™

22 The presence of the parameter u removes the earlier condition that Po(z) = 1. It

should also be noticed that we must have v > 0in (4.18). The case ¥ = 0 is special. For
if v = 0, then ¢ = 0, and

gu=a, qgu=0k>1); qu=8 gu=375 qw=0(kD>2).
Hence
H({t) = at, J({)=t/a, A(t) = p-exp (Bt + }6t%},
where & > 0 in order that the condition u, 0 be fulfilled.
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2ot
(4 12) H (t) = 2—-:_7-t’ () % + t’
' _ (2 = t\* 4(By + 20)
10 = (57) oo ({55}
where

w= :’Y? (v* — 28) # a non-negative integer

(in order that w, % 0).
Case II. 4 + 4¢ # 0. Let uy, us be the roots of (4.10). Then

(4.13) g = a(y’ + 497 Huf — us},  qruo = OF + 497 Mk — oul},

where A, ¢ are constants whose values are readily obtained. Consequently

t
t

Case II,. e = 0 (so that vy £ 0). Then

H@) = “Zlog 1 — ), J(@) = 1 <1 - exp{—lt»,
(4.15) K i *

ot
A = p — )" exp {—‘;y*},
where

—15(/37+7 + ),

and where § 0 in order that u, # 0.
Case II,. € = 0. Let r;, = 1/u;. Then

R L

@t —r) et — uy’ (1 (1 — ust)hr’
where

@1 o=l b= (e uEEVN LOE2)

Q

It is to be noted that in all cases H and J do not involve the parameters
B, 8, u and A does not involve a. It follows that all sets satisfying a relation of
form (4.6) and having the same «a, v, € correspond to the same operator J; and all
sets satisfying (4.6) with the same B, v, 8, € have the same determining™ function A.

The many relations obtained for H, J, 4 involve the original parameters
a, -+, € and u, sometimes in complicated manner. This suggests the possi-

28 At least to within a constant multiplier (because of the presence of u).
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bility of simplifying by introducing independent combinations of the original
parameters as new parameters. In fact, the following relations summarize the
various cases. They are, in order: Cases I, I special,® II,, II, ; that is,

at ¢ ° d
(4.18) HO == 7= o u(l = b)"-exp {1 bt}’

where a, b, ¢, d, u are arbitrary, but abcu = 0.

(4.19) H = «, J = A = pexp {bt + ct'},

t
(‘ir
a, b, ¢, u arbitrary, but acu = 0.

(4.20) H = alog (1 — bt), J = {1 — ¢}, A = pet (1 — bt)?,

o =

a, b, ¢, d, p arbitrary, but abcu = 0.

@2 H =110 {bg c;} J=bc(§:.:7_“_lb>, A=u<1——i>dl'(1—%>d2:

a, b, ¢, di, dg, u arbitrary, but abcu = 0 and™ b = c.
We therefore have

THEOREM 4.2. Let P be of zero type, with operator J and determining func-
tion A, so that (2.7) holds. A mnecessary and sufficient condition that P be an
orthogonal set is that J, H, A satisfy one of the conditions (4.18) to (4.21).

CoroLLARY 4.1. According to the case, the function Ae™™ of (2.7) assumes
the form:*

(4.22) Ae™ = p(1 — bt)°.exp {%} (abcu #~ 0),
(4.23) A = p.exp {t(b + azx) + cf’} (acu # 0),
(4.24) Ae™ = pett. (1 — bt)*te® (abep 5~ 0),
. t di+z/a t de—z/a
(4.25) Ae = M 1-— ‘c- 11— 5 (abc# # 0, b #= C).

The Laguerre set is a particular case of (4.22) and the Hermite set of (4.23).
If it were permissible to choose ¢ = 0 in (4.23) and (4.24) we would have as
particular cases, respectively, {"/n!} and the Newton set. Hence, these two
sets, while not Tchebycheff sets, are nevertheless limiting sets of Tcheby-
cheff sets.

If we form the functions {ud’(u)/A(w)}, {uH’'(w)}, evaluated for u = J(¢),
we find in the respective cases that

2¢ Case I special refers to an earlier footnote under Case I.

25 Also, the condition § + en 0 (n > 1) is to be translated in terms of the present
parameters.

26 (4.25) is subject to the restriction mentioned in the preceding footnote.
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@20 {“4} = Btata - ) + var, ('} = (o + b0);
4.27) {%,} =%y ?;_f (uH'} = &
(4.28) {uA’} = (1 — ") (ce'’ — bd) + be'", (uH'} = ale"* — 1)e™"',
u be(1 — €*) A o (e — 1)(ce™ — b)
(4.29) {T} (c -0 [ce"‘ + 3]’ tull’} = a(c — b)err

Since in (4.26) and (4.27) the expressions are polynomials, it follows from
Theorem 2.3 that the sets P of the first two cases satisfy the respective finite
order equations

430 M@l ={L@ =0 + 2py@ + {£+ Lahy) = 2o

@3 Myl ={ + oy + Ly = W),

where A = nfory = P, . The sets for the last two cases clearly do not satisfy
a finite order equation of form (2.14).

5. Sets of higher type. Although the present paper has as its main purpose
the treatment of zero type sets, we propose in this section to indicate some
extensions to sets of higher type. The definition of higher type depends on
what characterization of zero type sets one wishes to generalize. We have
given one definition in §1. This we shall call A-type. Thus: A set P ¢s of
A-type k if in (1.12) the maximum degree of the coefficients Ln(x) is k. If the
L,’s are of unbounded degree, P s of infinite A-type.

Let P be an arbitrary set. There exists a unique sequence of formal power
series {M,(t)} of form

(5.1) M, (t) = Mant™ + Mg uiat™ + - (Man # 0)
such that”
(5.2) e = 3 Pa(zx)M.(1).

n=0

DeriNiTioON. We shall term the set of series (or functions) M: {M.(t)} the
E-associate of set P.

CorOLLARY 5.1. Let P be a set and M its E-associate. A necessary and
sufficient condition that P be of type zero is that formal series

27 For our purpose it is a matter of indifference whether or not the series symbolized by
M.(t) converge. (5.1)is regarded as a ““carrier’’ for the coefficients mqx, and (5.2) is merely
a concise way of writing infinitely many linear equations in these coefficients.
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63 AO=Tal =0, JOxDal @=0
exist so that

Cwor [ W _
(5.4) o = HOT { A(u)} (w = J ).

For, if P is of type zero, (2.7) holds. And from (5.2), on setting ¢t = H (u),

Aw)e™™ 0 37 Po(x) M (H(u))A (u),
so that
AWM. (H(w) = u".

(5.4) follows on inverting: u = J(¢).

Conversely, suppose (5.3) and (5.4) are satisfied. Define the set @ to be of
type zero, corresponding to operator J and determining function 4, and let M*
be its E-associate. Then from the half already established, M has the value
given by (5.4). That is, Ma({) = M.,() for all n. But just as M is uniquely
determined from knowledge of P and (5.2), so is P uniquely defined by (5.2)
when M is given. Hence, @ and P are identical, and P is of type zero.

We now characterize sets of A-type k. Let P be such a set. Then, as we
know,

(5.5) L[P.] = Pp,

where

(5.6) Lly@)] = Joy] + aJily] + -+ + " Jly,

Jo, .-+, Ji being linear differential operators with constant coefficients such
that

(5.7 Jit) ~ aiit™ F @it 4+, 0=2i =k

Also, in order to insure that L carries every polynomial into another of degree
one less (since L[P,] = P,—;), we have the further condition

£n = a0 + na +nn — Dag + - +n--- (0 —k + Dagz # 0
(n=0’1,...),

(5.8)
From (5.6) and (5.2) we have

@ Lle®) 22 {Jo() + aJ1(t) + -+ + 2°Ju(t) }e*
a, © 0
= ; L[P. M. () =~ Zo Pn(x)MnH(t)-
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But also, on differentiating (5.2) k times in £, we get

b {Jo+ --- + 2Ji)e ‘02‘ Pa@) {JoMn + J1 M) + « oo + T MPY,

Again, in (a) and (b) both the coefficients of P,(x) are power series beginning
with a term in t"** (cf. relation (5.8)). These coefficients must therefore be
identical. That is,

(5.9) Muui(®) = Jo®Ma(t) + LiOML@E) + - + J@OMP (@) n=0,1,-..).
This proves the necessary part of

THEOREM 5.1. Let P be a set and M 1ts E-associate. A necessary and sufficient
condition that P be of finite A-type is that for some k there exist formal power series
(5.7) satisfying condition (5.8) such that M satisfies (5.9). Moreover, if Ji(t) # 0,
P is of A-type k.

The sufficiency is established as follows: (5.7) and (5.8) determine an operator
L of form (5.6). The first part of (a) holds to give

() Lle"] =~ }0: LIP,IMy = 30 LIPriilMy,
while (b) continues to hold. On using (5.9), (b) reduces to
(d) L[em] = ; PnMn-i-l;

so that

(e) 2 {LIPwal = P} M) = .

This formal identity means that if we rearrange in a power series in ¢, all coeffi-
cients must vanish. Recalling the form (5.1) of the functions M, , we see that
all the braces likewise vanish. That is, L[P,] = Pn—1,n = 1. That L[Py] = 0
is immediate. Hence Pis of A-type < k. The statement in the theorem con-
cerning the precise type number is evident.

If £ = 0, (5.9) reduces to M, = JM, (dropping the subscript 0); i.e.,
M, (t) = Mo@®)[J(@)]". This coincides with the previously found conditipn (5.4)
if A(t) is chosen so that My(t)A(J (1)) = 1.

It has already been observed that if M is any sequence of power series of form
(5.1) (which includes the condition m,, # 0), then (5.2) uniquely defines a set P
for which M is the E-associate. To say that M is the E-associate of some set P
is then equivalent to saying that M is of form (5.1).

From Theorem 5.1 we can prove

THEOREM 5.2. Let M be of form (5.1), so that M is the E-associate of a set P.
A necessary and sufficient condition that P be of finite A-type s that k exist so that
the following (k + 1) ratios of determinants are independent of n:
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G-1 +1 k
Mn M Mn] Mn+1 M;] ) et M5L>
A](t):: e ee cee e e cee e
(i=1) (7+1) (k)

Mn+k e Mn’+lc Mn+k+1 Mn{i-k e Mn+k

M, M, ... M®

G=0,1, ..., k).

Mask Mar -oo My
And of Ar(t) £ 0, the A-type is precisely k.

First, suppose P is of A-type k. If in (5.9) we replace n by n, n 4+ 1, ...,
n 4+ k respectively, we obtain ¥ + 1 equations for Jy, - - - , J; whose solution is
given by the determinant ratios™ in (5.10);i.e., J;(t) = A;(¢). Thus the condi-
tion is necessary. Conversely, suppose (5.10) holds, the A;’s being independent
of n. Then (5.9) is satisfied by the choice J; = A;. The sufficiency will now
follow from Theorem 5.1 if we show that J; satisfies conditions (5.7) and (5.8).

Suppose the series (5.1) is substituted into (5.10). It is found that the
numerator and denominator have as lowest terms, respectively,

n+k
ki1 "
ant™ H Mz Bat" H Mz

where
1 n e nn—=1) ... (n—k+1)

g, = |1 n+1 ... n+1)...(n—k+2

1 (m+k - (n+k) - (n+1)
and where «;, is obtained by replacing the (j + 1)-th column of 8, by the ele-
ments Mitn,itn + Mitnt,inna (¢ = 1,2, ..., k 4 1). Hence J; cannot begin
with a term of degree less than 1 if we show that 8, £ 0. If in 8, we subtract
each row from the one following, we obtain a new determinant (of value §,),
which is k! times 8, where 8, is obtained from B, by changing k to & — 1.
Working down to k = 1 we get 8, = kl(k — 1)! ... 2!'1], and this is not equal
to zero.

Thus, condition (5.7) holds. There remains to establish (5.8). Since A; = J;
begins with the term #*'a;, + B, (or a term of even higher degree), we see on
comparing with (5.7) that o;,;411 = @ + Ba. Hence aj,;a (j = 0,1, -+, k)
is the solution of a system of (k + 1) linear non-homogeneous equations, the
matrix of whose coefficients is given by the elements of the determinant 8.,
and whose non-homogeneous terms are the quantities Miin,itn + Mifn1,itn-1 -
The first of these equations is

an + nae + -+ +nn — 1) ---(n—k+1)ak,k+1=m7;—l"‘“.

28 That the denominator does not vanish identically is demonstrated later in the proof,
where it is shown that 8, = 0.
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The left side is the quantity &, of (5.8). As ms 5 0 for all 7, so is £, % 0 for all
n. Thus (5.8) holds and the proof is complete.
We come now to a second definition of type.

Lemma 5.1. To each set P corresponds a unique sequence of polynomials
{T,(x)}, with To(x) of degree not exceeding n, such that™

(5.11) Po=TPry+ TPos+ - +ToaPy (n=1,2...).

This is seen if we set n = 1, 2, . . . successively. It is to be observed that the
T,’s do not determine the P,’s uniquely. In fact, there are infinitely many sets
satisfying (5.11) for a given sequence {7',}.

DErFINITION. A set P is of B-type k if in (5.11) the maximum degree of the
polynomials T,(x) 1s k. Otherwise, P s of infinite B-type.

If P is of B-type zero, the T',’s are constants, so that (5.11) reduces to (2.21).
That is, P is of A-type zero. The converse is also true:

COROLLARY 5.2. A set P s of B-type zero if and only if it vs of A-type zero.
Let

(5.12) H(z, 1) > X P.(@)t,

0
(5.13) T(x, t) = 2 Ta(@)t".

0
Then (5.11) is seen to be equivalent to the relation

T = 22
ox

which, when solved for H, gives us
(5.14) H, t) = A@) exp {t fo T(, 1) dx},

where it is to be understood here and later that A (¢) is an arbitrary power series
beginning with a (non-zero) constant term. Conversely, if 7' is any series (5.13)
where T', is a polynomial of degree not exceeding n, then H(z, t) as defined by
(5.14) is such that (5.11) holds.”

If T(z, t) is written as a power series in x rather than ¢, (5.14) assumes the form

(5.15) H(z, t) o A(t) exp {zH\(f) + «"Ha(t) + - -},

29 This is an extension of Theorem 2.6.

3 The T,’s are not completely arbitrary. For P to be a set, it is necessary that P, be
of degree exactly n. This reflects itself in the non-vanishing for n = 1, 2, -+ - of certain
polynomialsin to , £11, t22, - -+ , where ¢;; is the coefficient of 2% in T';(z). These conditions
can be obtained from (5.11) by demanding that the right member be of degree exactly
(n — 1).
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where the H; are power series in ¢, H; beginning with a term in_#* or possibly
higher. (H, definitely begins with a term in ¢£.)

For P to be of B-type k, T'(x, t) must be a polynomial in  of degree k. Thisis
necessary and sufficient. On integrating, we get a polynomial of degree k + 1
in z. Hence we have

THEOREM 5.3. A necessary and sufficient condition that a set P be of B-type k
1s that 1t be given by (5.12) where H is of the form

(5.16) H(z, t) = A(t)- exp {zHi(t) + --- + 2" Hea(t)},
the H (t) being of form™
(5.17) Hi(t) = hit’ + hiyigat™ + - (ka1 5 0).

Given a set P, there exists a unique sequence of polynomials {U,(z)}, U, of
degree not exceeding n, such that

(5.18) nPy = UlPpy + - + U.Po n=12...).
(The U,’s are determined successively if we setn = 1,2, -.. .)

DerFiNiTION. P is of C-type k if the maximum degree of the U,’s is (k + 1).
If we set

(5.19) Ulw, ) = 22 Unn(@)t',
then from (5.12) and (5.18),

oH
ny =4,
so that
t
(5.20) H(z, 1) = c-exp { f Uz, ) dt}.
0

Here c is an arbitrary (non-zero) constant. Comparing (5.14) and (5.20), we see
that

t x
(5.21) log ¢ + fo Uls, ) dt = log A(t) + fo T(z, t) dz,
so that
A (7o
U ) =4 + [ Zenas,

t
tT(z, ) = | E;—i-]dt.

(5.22)

CoroLLARY 5.3. P 1s of C-type k of and only if it is of B-type k.

31 The non-vanishing conditions on the ¢;; referred to in the preceding footnote become
non-vanishing conditions on the h¢; .
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For P is of C-type k if and only if the brace in (5.20) is a polynomial in z of
degree k + 1. (5.20) thus reduces to (5.16), including the conditions (5.17).

There is no such close link between A-type and B-type. Consider, for
example, the set

e
2ln + DI
It is of A-type one since L[P,] = P, , where
Lyl = 2y + xy".
(Also, Jo(t) = 2t, J1(t) = £}, and M,(t) = (n + 1)1t".) On the other hand,
Ha ) = X0 m@%ﬁ X

so that log H is decidedly not a polynomial in . P is therefore of ¢nfinite B-type.
Let P be any set, and L its associated operator (i.e., L[P,] = P,—). From
(5.18) we have

Pn(x) =

U,LIP,) + -+ + U.L"[P,] = nP,,
so that we get

CoOROLLARY 5.4. Every set P satisfies an equation of form
(5.23) Viyl = 2 U L'yl = Ny,

where A = nfory = P,. The U,’s are defined as in (5.18), and L is the operator
associated with P. If P is of B-type k, the coefficients in (5.23) are polynomials
of maximum degree (k + 1).

In connection with sets of finite type (according to one definition or another)
there arises the problem of the application of finite type sets to the solution of
functional equations. This problem we reserve for another occasion. We shall
terminate the present section by showing that the Legendre polynomials are
of infinite type according to all the definitions given.

The B-type is determined by the maximum degree of the polynomials 7'»(z) of
(5.11). Using relations (5.12) to (5.14), where H = (1 — 2tz + ), we find
that

(a) Tz, t) = 3 Ta(x)t" = (1 — 2tx + £)7,
so that T, satisfies the recurrence relation
(b) T" - 2$Tn_.1 + T,,_z = O, n > 0.

With the initial conditions Ty = 1, T; = 2z, the solution of (b) is

© T.@) = 3 (@ +0™ = @—0™), 0= G - D



622 1. M. SHEFFER

It is seen that T.(z) is of degree n, so that {X,(x)} is of infinite B-type (and
C-type).
Now consider the A-type of {X,}. If Lis the associated operator then,

d) LiX,] = Xp,
where
() Lyl = Lo(x)y" + Li(@)y"” + --- .
Multiplying (d) by ¢* and summing from n = 0 to n = «, we obtain
() LH =tH, H=(1-2&+®"
Relation (e), for y = H, simplifies to

- 1-3 ... (2n + D"
® t= 2 L) A = 2z F @y
and if we set

_ 14

®) N T T

this becomes

@) % {1422\ — (1 + 42\ + 4G — DAY = 25 1.3 ... 2n + DN L, (2).
0

Since (g) is an identity in the variables t, z, so is (i) an identity in the variables

Nz If {X,]) is of finite A-type, the right member, and therefore the left, is a

polynomial in . This is manifestly untrue. Hence {X.,} is of infinite A-type.

PENNSYLVANIA STATE COLLEGE.



